Nārāyaṇa Paṇ̣̣ita's Turagagati Method for the Construction of 4x4 Pandiagonal Magic Squares

K. Ramasubramanian

Indian Institute of Technology Bombay, India
mullaikramas@gmail.com

Mathematics Colloquium
Ashoka University
February 2, 2021

Introduction to magic squares

- Toying with magic squares is indeed positively recreational and is known to have fascinated even the greatest of mathematicians. ${ }^{1}$
- A "normal" magic square of order n is an arrangement of n^{2} different numbers in a $n \times n$ square array such that the sum of the numbers along every row, column, and leading diagonals is the same.
- If the broken (or wrap-around) diagonals (alpaśruti) of the magic square also add up to the magic sum, then the square is called a pandiagonal magic square.

12	3	6	13		
14	5	4	11		
7	16	9	2		Normal magic
:---					
square $(S=34)$					
$(7+5+6+8 \neq 34)$					

10	3	13	8		
5	16	2	11		
4	9	7	14		
:---					
Pandiagonal magic square $(S=34)$					
15	$\mathrm{C}^{(4+16+13+1=34)}$				

Magic squares in India: Its purpose \& earliest occurrence

- In the Indian tradition, it is held that magic squares were first taught by Lord Śiva to Maṇibhadra. Nārāyaṇa Paṇḍita's Gaṇitakaumud̄̄ notes:

```
अथ भुवनत्रयगुरुणा उपदिष्टमीइोन माणिभद्राय । (origin of the study)
कौतुकिने भूताय श्रेढीसम्बन्धि सद्शणितम् ॥
सद्वणितचमत्कृतये यन्त्रविदां प्रीतये कुगणकानाम्। (its three-fold purpose)
गर्वक्षिप्यै वक्ष्ये तत्सारं भद्रगणिताख्यम्॥
```

(1) In order to embellish the practice of good mathematics
(2) For pleasing those who are involved with the [construction of] yantras.

O For eradicating the arrogance of the impostors.

- The earliest literary evidence for the occurrence of magic squares is to be found in the work ascribed to the famous Buddhist philosopher Nāgārjuna (1st century CE).

The pandiagonal magic square attributed to Nāgārjuna

- In his Kaksapuṭa-tantra, Nāgārjuna (100 CE) gives rules for the construction of 4×4 squares with even as well as odd sums. These rules are based on an interesting mnemonic expressed in Kațapayādi notation. A particular case of 4×4 square with the magic sum 100 is presented in the verse below:

नीलं चापि दयाचलो नवभुवं खारीवरं रागिनं
भूपो नारिवगो जरा चरनिभं तानं शातं योजयेत् ॥
भूतप्रेतपिशाचराक्षसमुखान् सर्पान् खलान् संहरत् अग्रिं चौरभयादिनारानमिदं नागार्जुनं निर्मितम् ॥

- The effect of seeing such a square described in the latter half of the verse quite interesting.
- This magic square has been called the Nāgārjunam.

30	16	18	36		
10	44	22	24		
32	14	20	34		Nāgārjuna's
:---					
Bhadram					
(S = 100)					

This square is formed of four arithmetic sequences namely:
$\{6,10,14,18\}, \quad\{16,20,24,28\}$, $\{22,26,30,34\}, \quad\{32,36,40,44\}$

- Varāhamihira's Bṛhat-samhitā (6th century CE), in Chapter 76, verses 23-26, gives the method of preparing perfumes employing the sarvatobhadra.

द्वित्रिइन्द्रियअष्टभागैः अगुरुः पत्रं तुरुष्कयौलेयौ। विषयअष्टपक्षदहनाः प्रियङ्गुस्तारसाः केराः॥ स्पृक्कात्वक्तगराणां मांस्याश्च कृतएकसप्तषड्भागाः। सप्तऋतुवेदचन्द्रैः मलयनखश्रीककुन्दुरुकाः॥

षोडइाके कच्छपुटे यथा तथा मिश्रिते चतुर्द्रव्ये। येऽष्टादरा भागास्तेऽस्मिन् गन्धादयो योगाः॥
नखतगरतुरुष्कयुता जातीकर्पूरमृगकृतोब्दोधाः । गुडनखधूप्या गन्धाः कर्तव्याः सर्वतोभद्राः॥

2	3	5	8		
5	8	2	3		Varāhamihira's
:---					
4	1	7			
:---					
sarvatobhadra					

Sir George A. Grierson on the antiquity of magic squares in India

Sir George Abraham Grierson (1851-1941), an Irish administrator in British India, with a keen interest in linguistics pursued studies in Indian languages and literature during his postings in Bengal and Bihar since 1873. In a short article titled "American Puzzle", he notes: ${ }^{2}$

AN AMERICAN PUZZLE.

About seven months ago, tbe Pioneer, in a letter headed "From All About," proposes a problem, called tbo "American Puzzle," tbe attempted solation of whieh is said to have driven sovoral people nearly mad. The problem is to arrango the sisteen consecutivo numbers from 1 to 16 , in four roms of four each in such a way that the total of every line and group of four will amount to exactly thirty-four. Tho puzzlo admits of soveral answers, and one is-

1	8	10	15
12	13	3	6
7	2	16	9
14	11	5	4

In tho above gronp overy line of fonr, every possible group of four forming a square, and tho sum of tho four corner numbers amounts to 34.

The problem is, however, by no means a modern one, dating, as it does, far back into the history of Indian Astrology. To prove what I say, I append the following extraet from the Jyotistativo: :-

From 1898, Grierson conducted the Linguistic Survey of India (published 1903-28), obtaining information on 364 languages and dialects.

Prescription given in the chapter Fyotiṣtattva of Raghunandana

In his text titled Smrtitattva, Raghunanada Bhaṭāāārya gives the following verses which have been extracted by Grierson:

पश्चरेखा समु⿸्ल्लिख्य तिर्यगूर्द्धक्रमेण हि।
पदानि षोडशापाद्य त्वेकमाद्ये मुनौ त्रयम् ॥
नवमे सप्त दद्यात्तु बाणं पश्चदरो तथा।
द्वितीयेऽष्टावष्टमे षट् दिशि दौ षोडरो श्रुतिः ॥

1	8							
		3	6					
7	2							
		5	4	\rightsquigarrow	1	8	10	15
:---:	:---:	:---:	:---:					
12	13	3	6					
7	2	16	9					
14	11	5	4					

Having drawn five lines horizontally and vertically, and thereby creating sixteen cells, in place 1 in the first of those, 3 in the seventh 3,7 in the ninth, 5 in the fifteenth, 8 in the second, 6 in the eighth, 2 in the tenth, and 4 in the sixteenth.

Having explained how to construct the basic framework it is said:

```
एकादिना समं जेयमिच्छाङ्कार्धं त्रिकोणके ।
तदा द्वात्रिंरादादिः स्यात् चतुष्कोष्ठेषु सर्वतः ॥ (सर्वतः - any which way you choose!)
```


Effects of possessing/having sight of magic squares

दर्शानाद्धारणात् तासां शुभं स्यात् एषु कर्मसु । द्वात्रिंशत् प्रसवे नार्याःचतुस्रिंराद्रमे नृणाम् ।
भूताविष्टेषु पश्चारात् मृतापत्यासु वै शातम् । द्वासप्ततिस्तु वर्ध्यायां चतुःषष्टी रणाद्धनि ।
विषे विंशो धान्यकीटेष्वष्टाविंशतिरेव च। चतुरष्टौ च बालानां रोदने परिकीर्तिता ॥

Magic sum	Effect of seeing such magic squares
32	Useful to a woman in childbirth
34	Used when setting out on a journey
50	Used for casting out devils
100	Used for women whose children have died
72	Used for a barren woman
64	Used in the tumult of battle
20	Used in cases of poisoning
28	Used when paddy is attacked by insects
84	Used for hushing children when they are crying

Manuscript of Ganitakaumudī

- The focus of this talk is to present the algorithm for constructing pandiagonal magic squares of order 4 by Turagagati method as propounded by Nārāyaṇa Paṇ̣ita in his Gaṇitakaumudī.
- In recent times, Henry Thomas Colebrooke, identified the presence of this text (Library of the India Office).
- The very first edition of the full text of Ganitakaumudī was by Pandit Padmākara Dvivedi, brought out as a two part publication in the years 1936 and 1942.
- Kusuba (1993) has also brought out the edited and transliterated version of the last two chapters. He also correctly constructed the 24 possible configurations of magic squares that Nārāyaṇa himself has alluded in the text, which seems to have errors in the edition of Dvivedi.
- Paramanand Singh has brought out the translation of the various chapters Ganitakaumudī as a series of publications since 1998.
- This work needs a thoroughly revised edition, as the current one is not satisfactory.
- Lehmer (1933) surveyed 4×4 squares and concluded that there are 539,136 semi magic squares, 7,040 normal magic squares and only 48 pandiagonal magic squares are possible.
- Later, Rosser and Walker (1938) have corrected this result and have mathematically arrived at the conclusion that there are 384 pandiagonal squares (as stated by Nārāyaṇa Paṇdita).
- Vijayaraghavan (1942) in his paper on Jaina Magic Squares deals with 4×4 pandiagonal magic squares, provides a mathematical analysis, brings out various properties.
- The article of Datta and Singh revised by K.S Shukla (1992), as well as the writings of R.C. Gupta (2005) have presented this method briefly.
- Bhowmik (2018) has worked on the proofs demonstrating certain properties.
- In all these works, the exact algorithm prescribed by Nārāyaṇa Paṇ̣ita for constructing magic squares with Turagagati has not been satisfactorily described and analysed in detail.

Number	Chapter Title	Mathematical topics covered
1	Prakīrnaka-vyavahāra	Logistics, weights and measures
2	Miśraka-vyavahāra	Partnership, sales, interest, etc.
3	Šredhī̄-vyavahāra	Sequences and series
4	Kṣetra-vyavahāra	Geometry of planar figures
5	Khāta-vyavahāra	Excavations
6	Citi-vyavahāra	Stacks
7	Rāśi-vyavahāra	Mounds of grain
8	Chāyā-vyavahāra	Shadow problems
9	Kuṭtaka	Linear indeterminate equations
10	Vargaprakrti	Quadratic indeterminate equations
11	Bhāgādāna	Factorisation
12	Rūpādyamśāvatāra	Partitioning unity into unit-fractions
13	Añkapāśa	Combinatorics
14	Bhadragaṇita	Magic squares

- The date of composition of Ganitakaumudī has been given by Nārāyaṇa Paṇ̣ita himself in the following verse that appears towards the end of the text.

गजनगरविमितराके दुर्मुखवर्षे च बाहुले मासि ।
धातृतिथौ कृष्णदले गुरौ समाप्तिं गतं गणितम् ॥
The Gaṇita (Gaṇitakaumudī) came to completion on Thursday, 2nd Tithi of the Krṣna Pakṣa (waning cycle of Moon), of the month Kärtika in Durmukha Saṃvatsarā, in Śaka 1278 (gaja-8; naga-7; ravi-12).

- Thus we unambiguously know that the work Ganitakaumudī got completed in the year 1356 CE (1278 Śaka year). It is interesting to note that Nārāyana Paṇ̣ita has specified the tithi count in terms of the devata \bar{a} of the tithi. Based on the list available from other works, we know that dhātrtithi corresponds to dvitīyā.

Nārāyaṇa Paṇ̣ita's ode to his father

- Unfortunately, not much is known about the Nārāyaṇa Paṇdita's date of birth, whereabouts and other biographical details. One verse in sragdharā meter that has been dedicated to capture the glory of his father is as follows:

आसीत् सौजन्यदुग्धांबुधिरवनिसुरश्रेणिमुख्यो जगत्यां
प्रख्यः श्रीकण्ठपादद्वयनिहितमनाः शारदाया निवासः।
श्रौतस्मार्तार्थवेत्ता सकलगुणनिधिः शिल्पविद्याप्रगत्भ:
शास्त्रे रास्त्र च तर्के प्रचुरतरगतिः श्रीनृसिंहो नृसिंहः ॥
He was the milky ocean of nobility (saujanya), the foremost in the assembly of brahmanas (avanisura) whose fame has spread over the world; [He was] one whose mind was steadfast (nihita) at the feet of Lord Śiva; one who was the dwelling place of Devī Sarasvatī; one who had mastered the [performances of] śrauta and smarta [karmas]; one who was a reservoir of all virtues; one who was outstanding in the field of architecture/geometry; one who had great felicity (pracurataragati) in śāstrās, rituals and logic; [my father] by name Śri Nṛsiṃha was indeed a nrsiṃha (lion among men).

Nārāyaṇa Paṇdita's classification of magic squares

- One of the notable features of Nārāyaṇa Paṇịita is that he methodically introduces all topics that he discusses.
- For instance, after setting out the historical background and context, he commences this chapter by broadly classifying three types of magic squares.

समगर्भविषमगर्भे विषमश्चेति त्रिधा भवेद् भद्रम्।...
भद्राङे चतुराप्ते निरग्रके तद्भवेच समगर्भम्।
द्ययग्रे तु विषमगर्भं त्रेकाग्रे केवलं विषमम्॥
Samagarbha, viṣamagarbha and viṣama are the three forms of magic square. When the order of the magic square is divided by 4 , if the remainder is zero, then it is samagarbha; if remainder is two, then it is viṣamagarbha; and if remainder is three or one, then it is visama.

Nārāyaṇa Paṇ̣̣ita’s turagagati method for constructing 4×4 pandiagonal magic squares

चतुरङतुरगगत्या दौ द्वौ श्रेढीसमुद्धवावङ्कौ।
न्यस्य क्रमोत्क्रमेण च कोष्ठैक्य-एकान्तरेण च तौ ॥१०॥
सव्यासव्यतुरड्गमरीत्या कोष्ठान् प्रपूरयेदक्कै:।
समगर्भे षोडरागृहभद्रे प्रोक्तो विधिश्चायम् ॥ 99 ॥
तिर्यक्कोष्ठगतानां ऊर्ध्वस्थानाज्च कर्णगानाज्च ।
अङ़কानां संयोगः पृथढ्झितो जायते तुल्यः ॥ १२ ॥
$\left.\begin{array}{l|l}\text { दी दौ श्रेढीसमुद्भवौ } \\ \text { अङ्सौ (चित्वा) } & \begin{array}{l}\text { Having chosen } \\ \text { pairs of numbers } \\ \text { generated in } \\ \text { an arithmetic }\end{array} \\ \text { sequence (średhi) }\end{array}\right\}$

Verses on constructing of 4×4 magic square by turagagati

चतुरङ্तुरगगत्या दौ द्वौ श्रेढीसमुद्धवावङ्कौ।
न्यस्य क्रमोत्क्रमेण च कोष्ठैक्य-एकान्तरेण च तौ ॥9०॥
सब्यासव्यतुरझ्झमरीत्या कोष्ठान् प्रपूरयेदक्कैः।
समगर्भे षोडरागृहभद्रे प्रोक्तो विधिश्चायम् ॥ 99 ॥
तिर्यक्कोष्ठगतानां ऊर्ध्ध्स्थानाज्च कर्णगानाज्च ।
अङ़कानां संयोगः पृथङ्झितो जायते तुल्यः ॥ १२ ॥

[such that the relative positions of the numbers placed by horse moves from any given cell] are positioned in adjacent cells [along diagonals]
or at an interval of one cell [either along a row, or column]
and by making use of the motion of horse to the left and right

चतुरङ्गतुरगगत्या द्वौ द्वौ श्रेढीसमुद्धवावङ्कौ।
न्यस्य क्रमोत्क्रमेण च कोष्ठैक्य-एकान्तरेण च तौ ॥९०॥
सव्यासव्यतुरङ्गमरीत्या कोष्ठान् प्रपूरयेदङ्कै।
समगर्भे षोडरागृहभद्रे प्रोक्तो विधिश्चायम् ॥ 99 ॥
तिर्यक्कोष्ठगतानां ऊर्ध्वस्थानाज्च कर्णगानाज्च ।
अङ़कानां संयोगः पृथढ्झितो जायते तुल्यः ॥ १२ ॥
समगर्भे
षोडरागृहभद्रे

कोष्ठान्
प्रपूरयेदङ्कै:

अयम् विधिः प्रोक्तः
in a magic square with 16 cells and of the type $4 n$
may you fill [all] the cells with the numbers [of the chosen arithmetic sequence]
this is the method that has been stated [by earlier mathematicians/himself?]

चतुरङ्गतरगगत्या द्वौ दौ श्रेढीसमुद्भवावङ्कौ।
न्यस्य क्रमोत्क्रमेण च कोष्ठैक्य-एकान्तरेण च तौ ॥१०॥
सव्यासव्यतुरड्गमरीत्या कोष्ठान् प्रपूरयेदक्कै:।
समगर्भे षोडरागृहभद्रे प्रोक्तो विधिश्चायम् ॥ 99 ॥
तिर्यक्कोष्ठगतानां ऊर्ध्वस्थानाज्च कर्णगानाज्च ।
अङ़ఘनां संयोगः पृथळ्झितो जायते तुल्यः ॥ १२ ॥

तिर्यक्कोष्ठगतानां अङ्झनां संयोगः

ऊर्ध्वस्थानाज्च

कर्णगानाज्च

पृथक्मितो जायते तुल्यः
[thereby] the sum of the numbers along the rows (tiryakkoṣtha)
and of those along the column
and of those along the diagonals [including broken diagonals] when counted separately will be equal

Nārāyaṇa Paṇdita's brief commentary

- After presenting the algorithm in the verses above, Nārāyaṇa Paṇ̣ita also tabulates 24 different half-filled configurations of the pandiagonal magic squares for a fixed position of 1 in the top-left corner. The table is accompanied with the following brief explanation in prose.

प्रथमयमलाङ्कयुगलम् $9|२| ३ 18$ द्वितीयम् ५ा६।७|८ तृतीयम् ९19०19919२ चतुर्थम् $9 ३|9819 ५ 19 ६|$ प्रथमकोणलग्नैः प्रथमयमलयुगाङ्कैः जाताश्चतुर्विशातिभेदाः। तेषां दर्शानम्। एवमन्यैर्यमलयुगाङ्హैः पृथक् पृथक् चतुर्विंशतिभेदा भवन्ति ।

- Then it is stated by Nārāyaṇa Paṇ̣ita -
एवं चतुर्भद्रस्य चतुर्भिः यमलैः चतुरइीत्यधिक-शात्र्यभेदा भवन्ति।।

Thus with just four pairs of numbers (caturbih yamalaih), there are 384 variants of a 4×4 [pandiagonal] magic square.

Notations and sets considered

We consider the following, in order to describe the algorithm.

- Let M be a pandiagonal magic square with 16 cells (kosṭhas) where the cells are denoted by :

$$
M_{i j} \quad(i, j=1,2,3,4)
$$

- Let S be the arithmetic sequence (średhi) with which the cells of M are to be filled. The sequence S we choose for demonstration is:

$$
S=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}
$$

- Subsets have to be conceived from this set of numbers as described by Nārāyaṇa Paṇ̣ita himself in his commentary as yamalänkayugalam, meaning pair of pairs. They are:

$$
S_{1}=\{1,2,3,4\}, \quad S_{2}=\{5,6,7,8\}, S_{3}=\{9,10,11,12\}, \quad S_{4}=\{13,14,15,16\}
$$

- The horse moves that will be considered for obtaining the magic squares, are represented:

$$
\begin{gathered}
H_{1}=\{(1,2),(1,3),(3,4)\}, H_{2}=\{(5,6),(5,7),(7,8)\}, \\
H_{3}=\{(9,10),(9,11),(11,12)\}, H_{4}=\{(13,14),(13,15),(15,16)\}
\end{gathered}
$$

In a 4 x 4 magic square, from any given cell, there are only four types of horse moves that are possible. They are represented by U, D, L and R and illustrated below:

			q
	p		

$\bar{U} r d h v a$ (up) - move U :
$\left(M_{i, j} \rightarrow M_{i-1, j+2}\right)$

p			
		q	

Adhah (down) - move D:
$\left(M_{i, j} \rightarrow M_{i+1, j+2}\right)$

	p		
q			

Savya (left) - move L :
$\left(M_{i, j} \rightarrow M_{i+2, j-1}\right)$

p			
			q

Asavya (right) - move R:

$$
\left(M_{i, j} \rightarrow M_{i+2, j+1}\right)
$$

- The term koșth \bar{a} employed in the context of magic squares represents a cell. Thus the two terms as such mean the following:
a. Koșthaikya - placement of numbers in adjacent cells
b. Kostthāntara - placement by skipping a cell in-between
- The significance of these terms is to capture the relative position of all the numbers, that are positioned by the four possible horse moves from a given cell.

- That is, the numbers positioned by horse moves from a given cell get placed in such a way that they will be either in koṣthaikya or koṣthāntara.

Significance of the phrase kramotkrama

- Kramotkrama is a qualifier that can either be attributed to the horse moves (turagagati) or to the choice of the numbers paired for making the horse move. In the algorithm that we describe below we kramotkrama is a qualifier to the way the pairs are chosen.
- Literally, the phrase kramotkrama means along an order (krama) or along a different order (utkrama). As presented earlier, the arithmetic series is structured as pair of pairs termed yamalāñkayugala by Nārāyaṇa Paṇ̣̣ita.
- The pairs of numbers chosen within these sets are in sequence and out of sequence. For instance in S_{1}, the horse moves listed earlier are (1,2) in krama and then $(1,3)$ in utkrama.

Rules for placing pairs in S_{1}
R. 1 The first element 1 of prathamayamalānkayugalam S_{1}, is to be placed in any of the sixteen cells.

Rules for placing pairs in S_{1}
R. 1 The first element 1 of prathamayamalänkayugalam S_{1}, is to be placed in any of the sixteen cells.
R. 2 For a fixed position of 1,2 can be placed by any one of the four valid horse moves - D / U / L / R, described earlier.

Rules for placing pairs in S_{1}
R. 1 The first element 1 of prathamayamalänkayugalam S_{1}, is to be placed in any of the sixteen cells.
R. 2 For a fixed position of 1, 2 can be placed by any one of the four valid horse moves - D / U / L / R, described earlier.
R. 3 Having placed 1 and 2,3 is also to be placed in a horse move with respect to 1 through any one of the three possible horse moves.

Rule-based algorithm with only horse moves

Rules for placing pairs in S_{1}

R. 1 The first element 1 of prathamayamalānkayugalam S_{1}, is to be placed in any of the sixteen cells.
R. 2 For a fixed position of 1,2 can be placed by any one of the four valid horse moves - D / U / L / R, described earlier.
R. 3 Having placed 1 and 2, 3 is also to be placed in a horse move with respect to 1 through any one of the three possible horse moves.
R. 4 Having placed 1,2 and 3,4 is placed such that it is in a horse move from both 2 and 3 . There is only one such

1			
		2	
4			
		3	

Rules for placing pairs in S_{2}, S_{3} and S_{4}

R. 5 Having placed all elements in $S_{1}, 5$ is placed such that it is always in a horse move from 1. There are only two possible ways to place 5 , since 2 and 3 are already positioned through horse moves from 1.

1			
		2	
4	5		
		3	

Rules for placing pairs in S_{2}, S_{3} and S_{4}

R. 5 Having placed all elements in $S_{1}, 5$ is placed such that it is always in a horse move from 1 . There are only two possible ways to place 5 , since 2 and 3 are already positioned through horse moves from 1.
R. 6 All numbers in each of the yamalänkayugalams of S_{2}, S_{3} and S_{4} get placed by choosing the same set of horse moves chosen for the pairs in prathamayamalänkayugalam S_{1}, with the only condition that if a cell is already filled then the horse moves get reversed.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	\mathbf{H}_{2}	\mathbf{H}_{3}	\mathbf{H}_{4}
$(\mathbf{1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$(3,4)$	$(7,8)$	$(11,12)$	$(15,16)$

1			
		2	
4	5		
		3	6

Rules for placing pairs in S_{2}, S_{3} and S_{4}

R. 5 Having placed all elements in $S_{1}, 5$ is placed such that it is always in a horse move from 1 . There are only two possible ways to place 5 , since 2 and 3 are already positioned through horse moves from 1.
R. 6 All numbers in each of the yamalänkayugalams of S_{2}, S_{3} and S_{4} get placed by choosing the same set of horse moves chosen for the pairs in prathamayamalānkayugalam S_{1}, with the only condition that if a cell is already filled then the horse moves get reversed.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	\mathbf{H}_{2}	\mathbf{H}_{3}	\mathbf{H}_{4}
$(\mathbf{1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$(3,4)$	$(7,8)$	$(11,12)$	$(15,16)$

1			
		2	7
4	5		
		3	6

Rules for placing pairs in S_{2}, S_{3} and S_{4}

R. 5 Having placed all elements in $S_{1}, 5$ is placed such that it is always in a horse move from 1 . There are only two possible ways to place 5 , since 2 and 3 are already positioned through horse moves from 1.
R. 6 All numbers in each of the yamalänkayugalams of S_{2}, S_{3} and S_{4} get placed by choosing the same set of horse moves chosen for the pairs in prathamayamalänkayugalam S_{1}, with the only condition that if a cell is already filled then the horse moves get reversed.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	\mathbf{H}_{3}	\mathbf{H}_{4}
$(\mathbf{1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$(3,4)$	$(7,8)$	$(11,12)$	$(15,16)$

1	8		
		2	7
4	5		
		3	6

Rules for placing pairs in $\mathrm{S}_{2}, \mathrm{~S}_{3}$ and S_{4}

R. 7 Having placed elements in S_{1} and $S_{2}, 9$ is placed in the only horse move position that is available from 1.

1	8		
		2	7
4	5		9
		3	6

R. 7 Having placed elements in S_{1} and $S_{2}, 9$ is placed in the only horse move position that is available from 1.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	\mathbf{H}_{3}	\mathbf{H}_{4}
$\mathbf{(1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$\mathbf{(3 , 4)}$	$(7,8)$	$(11,12)$	$(15,16)$

1	8		
		2	7
4	5		9
	10	3	6

R. 7 Having placed elements in S_{1} and $S_{2}, 9$ is placed in the only horse move position that is available from 1.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	\mathbf{H}_{3}	\mathbf{H}_{4}
$\mathbf{(1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$\mathbf{(3 , 4)}$	$(7,8)$	$(11,12)$	$(15,16)$

1	8		
	11	2	7
4	5		9
	10	3	6

R. 7 Having placed elements in S_{1} and $S_{2}, 9$ is placed in the only horse move position that is available from 1.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	\mathbf{H}_{3}	\mathbf{H}_{4}
$\mathbf{(1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$\mathbf{(3 , 4)}$	$(7,8)$	$(11,12)$	$(15,16)$

1	8		12
	11	2	7
4	5		9
	10	3	6

R. 7 Having placed elements in S_{1} and $\mathrm{S} 2,9$ is placed in the only horse move position that is available from 1.
R. 8 Having placed elements in $S_{1}, \mathrm{~S} 2$ and $S_{3}, 13$ is placed in the only horse move position that is available from 9.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	\mathbf{H}_{3}	\mathbf{H}_{4}
$\mathbf{(1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$\mathbf{(3 , 4)}$	$(7,8)$	$(11,12)$	$(15,16)$

1	8	13	12
	11	2	7
4	5		9
	10	3	6

R. 7 Having placed elements in S_{1} and $\mathrm{S} 2,9$ is placed in the only horse move position that is available from 1.
R. 8 Having placed elements in $S_{1}, \mathrm{~S} 2$ and $S_{3}, 13$ is placed in the only horse move position that is available from 9.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	\mathbf{H}_{3}	\mathbf{H}_{4}
$\mathbf{(1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$\mathbf{(3 , 4)}$	$(7,8)$	$(11,12)$	$(15,16)$

1	8	13	12
14	11	2	7
4	5		9
	10	3	6

R. 7 Having placed elements in S_{1} and $S_{2}, 9$ is placed in the only horse move position that is available from 1.
R. 8 Having placed elements in S_{1}, S_{2} and $S_{3}, 13$ is placed in the only horse move position that is available from 9.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	\mathbf{H}_{3}	\mathbf{H}_{4}
$\mathbf{(1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$\mathbf{(3 , 4)}$	$(7,8)$	$(11,12)$	$(15,16)$

1	8	13	12
14	11	2	7
4	5		9
15	10	3	6

R. 7 Having placed elements in S_{1} and $S_{2}, 9$ is placed in the only horse move position that is available from 1.
R. 8 Having placed elements in S_{1}, S_{2} and $S_{3}, 13$ is placed in the only horse move position that is available from 9.

Equivalent pairs horse moves			
$\mathbf{H}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{2}}$	\mathbf{H}_{3}	\mathbf{H}_{4}
$\mathbf{(1 , 2)}$	$(5,6)$	$(9,10)$	$(13,14)$
$\mathbf{(1 , 3)}$	$(5,7)$	$(9,11)$	$(13,15)$
$\mathbf{(3 , 4)}$	$(7,8)$	$(11,12)$	$(15,16)$

1	8	13	12
14	11	2	7
4	5	16	9
15	10	3	6

Analysis

Based on the aforesaid rules, it can be observed that:

- Having fixed a position for 1 , there are four possible moves for placing 2 . Thus the pair (1,2) can have four different configurations.
- For a fixed position of 1 , there are three possible moves for placing 3.
- It becomes evident that there will remain only one position for placing 4 in accordance to the rules R4.

Thus at this stage we see that there are totally $4 \times 3=12$ possible configurations.

- For a given arrangement of $1,2,3$ and 4 , only two possible positions are available for 5 satisfying the aforesaid rule R.5. Thus at this stage we see that there are totally $12 \times 2=24$ possible configurations.
- Once the numbers $1,2,3,4$, and 5 are fixed, the rest of the square has only a unique solution for being a pan diagonal magic square.

Analysis

Properties of Nārāyaṇa Paṇdita's pandiagonal magic squares of order 4

A study of the pandiagonal magic squares of order four, reveals that there are a few interesting properties observed in them.

P1: The sum of elements in any 2×2 square across the torus of a pandiagonal magic square of order four yields the magic sum.

P2: The sum of elements in any two cells that are separated by one cell in between them (koșthāntara) along the diagonal on a pandiagonal magic square of order four yields the half magic sum.

P3: For any given number of the arithmetic series that is chosen to fill the cells, the set of four numbers in the adjacent cells (koșthaikya) along the row and column remain the same.

These properties are very useful to complete incomplete pandiagonal magic squares of order four as well as build them, in addition to the aforementioned algorithm.

Proof for P1

In any magic square the sum of the elements in rows and columns add up to the magic sum. Considering the sum of the first two rows and last two columns we have,

$$
\begin{align*}
& m 11+m 12+m 13+m 14+m 21+m 22+m 23+m 24=2 S \tag{1}\\
& m 13+m 23+m 33+m 43+m 14+m 24+m 34+m 44=2 S \tag{2}
\end{align*}
$$

Equating (1) and (2) we get,

$$
\begin{equation*}
m 11+m 12+m 21+m 22=m 33+m 34+m 43+m 44 \tag{3}
\end{equation*}
$$

m11	m12	m13	m14
m21	m22	m23	m24
m31	m32	m33	m34
m41	m42	m43	m44

In a magic square, since the cyclic permutation of the rows and columns does not affect the magic sum S , (3) implies that the sum of the elements of any two 2×2 squares are equal. The leading and broken diagonal elements must independently add up to the magic sum. Thus we have

$$
\begin{align*}
& m 11+m 22+m 33+m 44=S \tag{4}\\
& m 21+m 12+m 43+m 34=S \tag{5}
\end{align*}
$$

Adding (4) and (5) we get

$$
\begin{equation*}
(m 11+m 12+m 21+m 22)+(m 33+m 34+m 43+m 44)=2 S \tag{6}
\end{equation*}
$$

From (1) and (3) it is evident that

$$
\begin{equation*}
m 11+m 12+m 21+m 22=S=m 33+m 34+m 43+m 44 \tag{극}
\end{equation*}
$$

Proof for P2

From P1 we know that

$$
\begin{align*}
& m 11+m 12+m 21+m 22=S \tag{8}\\
& m 21+m 22+m 31+m 32=S \tag{9}
\end{align*}
$$

Equating (8) and (9) we get,

$$
\begin{equation*}
m 11+m 12=m 31+m 32 \tag{10}
\end{equation*}
$$

$m 11$	$m 12$	$m 13$	$m 14$
$m 21$	$m 22$	$m 23$	$m 24$
$m 31$	$m 32$	$m 33$	$m 34$
$m 41$	$m 42$	$m 43$	$m 44$

Now consider the sum of elements in the third row of the square M. We have,

$$
\begin{equation*}
m 31+m 32+m 33+m 34=S \tag{11}
\end{equation*}
$$

Using (10) and (11) we get,

$$
\begin{equation*}
m 11+m 12+m 33+m 34=S \tag{12}
\end{equation*}
$$

By definition, any broken diagonal of M must add up to the magic sum S. So we have,

$$
\begin{equation*}
m 21+m 12+m 43+m 34=S \tag{13}
\end{equation*}
$$

Equating (12) and (13) we get,

$$
\begin{equation*}
m 11+m 33=m 21+m 43 \tag{14}
\end{equation*}
$$

Proof for P2

We have,

$$
m 11+m 33=m 21+m 43
$$

Considering the sum of elements of the third column in M, we have:

$$
\begin{equation*}
m 13+m 23+m 33+m 43=S \tag{15}
\end{equation*}
$$

Akin to (10), it can be easily shown that

$$
\begin{equation*}
m 11+m 21=m 31+m 32 \tag{16}
\end{equation*}
$$

$m 11$	$m 12$	$m 13$	$m 14$
$m 21$	$m 22$	$m 23$	$m 24$
$m 31$	$m 32$	$m 33$	$m 34$
$m 41$	$m 42$	$m 43$	$m 44$

Using (16) in (15) we get,

$$
\begin{equation*}
m 11+m 21+m 33+m 43=S \tag{17}
\end{equation*}
$$

From (14) and (17) it is evident that

$$
\begin{equation*}
m 11+m 33=S / 2=m 21+m 43=S / 2 \tag{18}
\end{equation*}
$$

The property P 2 is thus proved.

Set of numbers that get placed by horse moves

It has been stated by Vijayaraghavan (1941) that in a pandiagonal magic square of order 4, for any given number from the series of sixteen elements, the set of four other numbers that get placed by the four horse move positions are always fixed in all the 384 configurations. These four numbers, of course, can be arranged in $4!=24$ ways.

These four numbers that get placed by the only four horse move positions from any number are:
i the number that is in koṣthaikya within the pair (yugala),
ii the number that is in kosṭhantara within the pair of pairs (yamalānkayugalam),
iii the number that lies in the equivalent position with the adjacent pair of pairs (yamalānkayugalam) and
iv the number that lies in the equivalent position in the conjugate pair of pairs (yamalāñkayugalam).

Set of numbers that get placed by horse moves

Set of numbers that get placed by horse moves

Given number	Set of numbers positioned by horse moves			
	Within the pair	Within pair of pairs	With adjacent pair of pairs	With the next to adjacent pair of pairs
	2	3	5	9
2	1	4	6	10
3	4	1	7	11
4	3	2	8	12
5	6	7	1	13
6	5	8	2	14
7	8	5	3	15
8	7	6	4	16
9	10	11	13	1
10	9	12	14	2
11	12	9	15	3
12	11	10	16	4
13	14	15	5	9
14	13	16	6	10
15	16	13	7	11
16	15	14	8	12

All squares with a fixed position for the first element

S1

1	14	11	8
12	7	2	13
6	9	16	3
15	4	5	10

S2

1	14	7	12
8	11	2	13
10	5	16	3
15	4	9	6

S3

1	8	11	14
12	13	2	7
6	3	16	9
15	10	5	4

S4

1	12	7	14
8	13	2	11
10	3	16	5
15	6	9	4

S5

1	12	13	8
14	7	2	11
4	9	16	5
15	6	3	10

S 6

1	8	13	12
14	11	2	7
4	5	16	9
15	10	3	6

S10

1	14	7	12
15	4	9	6
10	5	16	3
8	11	2	13

S16
S15

S23

1	14	4	15
8	11	5	10
13	2	16	3
12	7	9	6

Concluding remarks

- In this study, we have set the context and highlighted the motivation for studying the turagagati method of constructing 4×4 pandiagonal magic squares as elucidated by Nārāyaṇa Paṇ̣ita.
- The verses that present this method in Ganitakaumudī allow scope for more than one interpretation.
- The algorithm can be derived either by placing the pairs from a sequence only through horse moves or by considering moves in addition to horse moves.
- Of foremost importance to Indian mathematicians is simplicity and optimised set of rules. It is clear that the algorithm that employs only the horse moves by taking pairs in order and by jumping the order, within the pair, within pair of pairs and across pair of pairs, seems to be the more elegant.
- A very interesting facet of this algorithm is that the pandiagonal squares can be generated by choosing a single arithmetic sequence with sixteen elements or with four arithmetic sequences consisting a pair of pairs, with the constraint that the first elements of the pair of pairs satisfy $-a_{1}+d_{1}=b_{1}+c_{1}$.

The thrill in investigating historical material

An interesting observation by Donald Knuth - the author of The Art of Computing

My major failing as a teacher was that I wasn't able to get a single one of my 28 PhD students to realize what a thrill it is to work on source material!
!

Concluding Remarks

- In 1969 Sir C V Raman observes:

We have, I think, developed an inferiority complex. I think what is needed in India today is the destruction of that defeatist spirit. We need a spirit of victory, a spirit that will carry us to our rightful place under the sun; a spirit which will recognise that we, as inheritors of a proud civilisation, are entitled to our rightful place on the planet. If that indomitable spirit were to arise, ${ }^{a}$ nothing can hold us back from achieving our rightful destiny.
${ }^{a}$ The Upanisadic passage - उत्तिष्ठत जाग्रत प्राप्य वरान्निबोधत - essentially does this.

- Raman brings out an extremely important point here. The inferiority complex, residing in us as a parasite, without our knowledge, has been inhibiting us for centuries!
- One way (if not the only way) to get rid of this problem is to make the citizens of our nation to shed way the cultivated ignorance by making them aware of their own scientific heritage.
- Then as Raman says, nothing can hold us back!

References

- Gupta, R. C. "Early Pandiagonal Magic squares in India." Bulletin of Kerala Mathematics Association 2 (2005): 25-44.
- K. S. Shukla (revised). Bibhutibhusan Datta and Avadhesh Narayan Singh. "Magic Squares in India" Indian Journal of History of Science, Vol. 27, No. 1 (1992), pp. 51-120.
- Kusuba, Takanori. Combinatorics and Magic Squares in India. A Study of Nārāyaṇa Paṇ̣̣ita's Gaṇitakaumud̄̄, Chaps. 13-14. Diss. Ph. D. Dissertation, Brown University, 1993.
- Lehmer, D. N. 1933 A Census of Squares of Order Four. Bull. Am. Math. Soc. 39, p. 981
- Paramanand Singh, A Critical Study of the Contributions of Nārāyaṇa Paṇ̣ita to Hindu Mathematics (Bihar Univ. 1978).
- Paramananda Singh, Gaṇitakaumudī of Nārāyaṇa Paṇḍita, Translation and notes in Gaṇita Bhārati, New Delhi, Vols. 20-24, 1998-2002
- Sesiano, Jacques. Magic Squares. Springer International Publishing, 2019.
- Singh, Paramanand, 'The Gaṇitakaumudi of Nārāyaṇa Paṇ̣ita: Chapter XIV, English Translation with Notes', Gaṇita Bhārati, 24(2002) 34-98
- Sridharan, Raja, and M. D. Srinivas. "Study of Magic Squares in India." R. Sujatha et al., Mathematics Unlimited: Essays in Mathematics, Taylor \& France, London (2011): 383-391.

Thank You！

4.

\square

